If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2-9=0
a = 72; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·72·(-9)
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*72}=\frac{0-36\sqrt{2}}{144} =-\frac{36\sqrt{2}}{144} =-\frac{\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*72}=\frac{0+36\sqrt{2}}{144} =\frac{36\sqrt{2}}{144} =\frac{\sqrt{2}}{4} $
| 8(v+7)+5v=-9 | | x+3/5=-1/4 | | 7x-3=10x+4 | | 4(x)+9=-61-6x | | x−17=30 | | 12+13y=180 | | 14=-3u+8(u-2) | | 5x+5x=x-3+x-3 | | x-1454=1250 | | 10(2x-3)-7(4x-6)=2-6x | | 3d-24=6d | | 5=-2(x)+21 | | 8-(2a+7)=a=40 | | 9y+3y=4y+16 | | 9^x=3^11 | | b/3+5=11 | | |5-3x|-2=5 | | 10+4x=13-2x | | 1/2y+3=12 | | -15-3f=51 | | 3(4-a)=2(a=6) | | 7x+9=78 | | 12y+3=180 | | -15-3f=-5` | | (x-4)^2+2=11 | | x+3.2=9.4 | | n/4-12=-8 | | 3x^2+10=-4x | | 3(2r+2)=4(3r-9) | | 9x²+42x+49=0 | | 2(10x-5)+5=55 | | 1/3x+2/3=1/4x+.75 |